| Units/Topics | Time Frame | Major Learning Outcomes Unit | Major Resource(s) Assessment methods | |--|-----------------------------|--|--| | Unit 1 Review of Basic Principles | 2-3 weeks Sept. | Identify protons, neutrons, and electrons as components of an atom. Calculate atomic mass (atomic weight) values when given the percentage of each isotope of an element. Use the periodic table. Write the formula of a compound, given its name. Write the name of a compound, given the formula. Use a table of atomic mass units (atomic weights) to determine the formula weight (molecular weight, molecular mass, molar mass) of chemical compounds. Balance chemical equations for mass and for charge. Describe the physical properties of ionic, metallic, and covalent (molecular), and van der Waal's solids. | Resources: Teacher-made resources to review materials from chemistry 20 Newfoundland Distance learning — www.cdli.ca Textbook: McGraw-Hill Ryerson Chemistry Informal assessments: Written assessments Homework assignments Formal assessments: Unit test upon completion of unit | | Unit 2 Thermodynamics (Energy Changes in Chemical Reactions) | 2 – 3 weeks
Sept. – Oct. | Recognize that energy changes are associated with chemical reactions. Relate enthalpy change in a reaction to bond energy and stability. Differentiate between endothermic and exothermic reactions. | Resources: Teacher-made resources Saskatchewan Learning - http://staff.prairiesouth.ca/~chemistry/ch em30/ | | | | Compare the energy changes in phases changes and chemical reactions. Explain the difference between heat and temperature. Identify reactions which are used to produce useful heat. Consider the environmental and social effects of the use of heat energy by our society. Measure some energy changes in chemical reactions. Investigate how tables of standard heats (enthalpies) of formation are created and used. Express the enthalpy change of chemical reactions as a term in the equation for the reaction, or as a heat of reaction (ΔΗ). Use tables, graphs, or diagrams and an application of Hess's Law to infer enthalpy changes in reactions. | Newfoundland Distance learning — www.cdli.ca Textbook: McGraw-Hill Ryerson Chemistry Informal assessments: Homework assignments Formal assessments: Written assessments Lab activities Unit test upon completion of unit | |-----------------------------|-----------|--|--| | Unit 3
Chemical Kinetics | 2-3 weeks | Suggest some ways in which the rate of a chemical reaction could be measured. Identify some factors which affect the rate of chemical | Resources: Teacher-made resources | | | Oct. | reactions. Apply collision theory to account for the factors which affect the rates of chemical reactions. Recognize that chemical reactions may occur in successive elementary steps. Understand how a series of simple reactions can | Saskatchewan Learning - http://staff.prairiesouth.ca/~chemistry/chem30/ | | | | constitute a reaction mechanism for a complex reaction. Discuss the concept of threshold energy. Interpret energy versus reaction pathway diagrams. | Newfoundland Distance learning – www.cdli.ca | | | | Consider the existence of transition states in which activated complexes exist. Explain the role of catalysts in chemical reactions. Interpret energy versus reaction pathway diagrams for catalyzed and uncatalyzed reactions. Describe the use of catalysts in a variety of applications. | Textbook: McGraw-Hill Ryerson Chemistry Informal assessments: Homework assignments Formal assessments: Written assessments Lab activities Unit test upon completion of unit | |--------------------|---------------------|---|--| | Unit 4 Equilibrium | 2 – 3 week Oct Nov. | Observe and describe some reactions which are easily reversible and some which are not easily reversible. Consider the implications for a system when the rates of the forward and the reverse reactions that define the system are equal. Discuss non-chemical analogies which illustrate or simulate equilibria. Distinguish between dynamic equilibria and steady-state processes. Discuss the influence of free energy on the spontaneity of reactions. Understand why Le Chatelier's principle works. Use Le Chatelier's principle to predict how various equilibrium systems will shift in response to external stress. Discuss industrial applications of Le Chatelier's principle. | Resources: Teacher-made resources Saskatchewan Learning - http://staff.prairiesouth.ca/~chemistry/ch em30/ Newfoundland Distance learning - www.cdli.ca Textbook: McGraw-Hill Ryerson Chemistry | | | | Write he equilibrium constant expression for a chemical reaction using the general equation: aA_(aq) + bB_(aq) ⇌ cC_(g) + dD_(aq) Recognize that K_{eq} values are dependent upon temperature but are independent of concentration. Analyze graphs of the concentrations of reactants and products with respect to time in a chemical reaction which is approaching equilibrium. Interpret K_{eq} values to determine whether products or reactants are favoured once equilibrium has been reached. Solve problems involving the equilibrium constant expression for a chemical reaction, with concentrations expressed in mol·litre and kPa. | Informal assessments: Homework assignments Formal assessments: Written assessments Lab activities Unit test upon completion of unit | |---------------------------------|-------------|---|--| | Unit 5 Solubility and Solutions | 2 – 3 weeks | Express the concentration of a solution in moles of solute per litre of solution (M, moles·litre or mols·L). Manipulate the relationship which links the mass of solute, volume of solution and concentration of solution so that given two, the other can be determined. Describe how to prepare standard solutions and serial dilutions in the laboratory. Manipulate the relationship which links original concentration, volume of diluent and concentration of diluted solution so that given two, the other may be determined. Relate concentrations expressed as ppm or ppb to those expressed as mols·L or g·L Use solubility charts to determine the solubility of various substances. Describe how to perform tests on solutions to determine which ions or ion groups are present. | Resources: Teacher-made resources Saskatchewan Learning - http://staff.prairiesouth.ca/~chemistry/ch em30/ Newfoundland Distance learning - www.cdli.ca Textbook: McGraw-Hill Ryerson Chemistry Informal assessments: Homework assignments | | | | Describe how to separate ions in solution by selective precipitation. Describe how the common ion effect influences the solubility of a solute in a solution. Investigate the application of the principles of solubility. Read and interpret solubility charts and tables | Formal assessments: Written assessments Lab activities Unit test upon completion of unit | |---------------------------|-------------|--|--| | Unit 6
Acids and Bases | 2-3 weeks | Identify some acids and some bases which are used in
common household products. | Resources: | | | Nov. – Dec. | Observe some physical and chemical characteristics of
acids and bases. | Teacher-made resources | | | | Construct an operational definition of an acid and a base, using the characteristic properties of those substances. Describe the Brønsted-Lowry conceptual definition of acids and bases. Identify the conjugate bases formed in acid dissociation. Associate acid or base strength with magnitudes of K_a and K_b. | Saskatchewan Learning - http://staff.prairiesouth.ca/~chemistry/ch em30/ Newfoundland Distance learning — www.cdli.ca | | | | Identify the conjugate acid of any base.Recognize substances which are amphiprotic | Textbook: | | | | (amphoteric). Compare the strengths of the dissociations in the | McGraw-Hill Ryerson Chemistry | | | | dissociation series for a polyprotic acid. Investigate the nature of the production and use of | Informal assessments: | | | | acids and bases in our society. Write the equilibrium constant expression for the dissociation of water. | Homework assignments | | | | Show how the common ion effect influences the equilibrium of water's dissociation when H+ ions or OH | Formal assessments: | | | | ions are added to water. Recognize the relationship between the [H+] and [OH)] | Written assessments | | | | in an aqueous system. Calculate the [H+] in a solution. Express the [H+] as a pH value. Explain how a logarithmic scale differs from an arithmetic scale. Estimate the pH of solutions, using indicator solutions and indicator papers. State the general neutralization equation: acid + base 6 salt + water Write equations for specific neutralization reactions, identifying the nature of each species. Solve mathematical problems involving data from titrations. Develop skill in doing titrations. Read and interpret the scales on buret tubes. | Lab activities Unit test upon completion of unit | |---|--------------------------|--|---| | | | Discuss with peers how estimates of values are made. Use information from Ka tables to calculate pH values in solutions and check results of calculations with indicators. | | | Unit 7 Electrochemistry (Oxidation and Reduction) | 2 – 3 weeks Dec. – Jan. | Define oxidation and reduction in terms of transfer of electrons. Develop a reduction potential series based on experimental results. Write half reactions and net ionic equations involving oxidation-reduction processes. Use a table to compare reduction potentials of half-reactions. Describe the processes of corrosion and metallic deposition, using the terms oxidizing agent, reducing agent, oxidized species, and reduced species. Identify and investigate means of protecting metals against corrosion. Describe the conditions under which automobiles corrode most quickly. Determine the direction of electron flow in an electrochemical cell. | Resources: Teacher-made resources Saskatchewan Learning - http://staff.prairiesouth.ca/~chemistry/ch em30/ Newfoundland Distance learning - www.cdli.ca Textbook: McGraw-Hill Ryerson Chemistry | | | | Measure the voltage in several electrochemical cells. Calculate the potential difference in volts of electrochemical cells, using a standard reduction potential table. Explain the difference between a standard potential and an observed potential. Compare electrochemical and electrolytic cells. Examine applications of electrochemistry. Understand and use the vocabulary, structure and forms of expression which characterize the study of oxidation-reduction reactions. | Informal assessments: Homework assignments Formal assessments: Written assessments Lab activities Unit test upon completion of unit | |--|-----------------------------|---|--| | Laboratory Activities Independent Research | Integrated within units 1-7 | Develop abilities to meet own learning needs. Understand the uses and abuses of mathematical concepts in everyday life. Participate in scientific inquiry. Focus attention on knowledge and gaps in personal knowledge related to a specific topic Write proposals for individual or group projects, including such things as: a completion date, criteria for assessment, resources to be accessed, preferred method of presentation, suggested audiences for presentation, and meeting dates for review and collaboration. Take responsibility for their own learning by setting goals, designing plans, developing proposals, | Resources: Teacher-made resources Saskatchewan Learning - http://staff.prairiesouth.ca/~chemistry/ch em30/ Newfoundland Distance learning - www.cdli.ca Textbook: McGraw-Hill Ryerson Chemistry | | | | suggesting baseline performance levels, organizing allotted time, managing activities, evaluating success, and reviewing the entire process. Demonstrate ability to access information from a variety of resources. | Informal assessments: Homework assignments Lab activities |